Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient optimization of fermionic projected entangled pair states on directed lattices (1812.03657v2)

Published 10 Dec 2018 in cond-mat.str-el and quant-ph

Abstract: The recently developed stochastic gradient method combined with Monte Carlo sampling techniques [PRB {\bf 95}, 195154 (2017)] offers a low scaling and accurate method to optimize the projected entangled pair states (PEPS). We extended this method to the fermionic PEPS (fPEPS). To simplify the implementation, we introduce a fermi arrow notation to specify the order of the fermion operators in the virtual entangled EPR pairs. By defining some local operation rules associated with the fermi arrows, one can implement fPEPS algorithms very similar to that of standard PEPS. We benchmark the method for the interacting spinless fermion models, and the t-J models. The numerical calculations show that the gradient optimization greatly improves the results of simple update method. Furthermore, much larger virtual bond dimensions ($D$) and truncation dimensions ($D_c$) than those of boson and spin systems are necessary to converge the results. The method therefore offer a powerful tool to simulate fermion systems because it has much lower scaling than the direct contraction methods.

Summary

We haven't generated a summary for this paper yet.