Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crossfire Attack Detection using Deep Learning in Software Defined ITS Networks (1812.03639v2)

Published 10 Dec 2018 in cs.CR

Abstract: Recent developments in intelligent transport systems (ITS) based on smart mobility significantly improves safety and security over roads and highways. ITS networks are comprised of the Internet-connected vehicles (mobile nodes), roadside units (RSU), cellular base stations and conventional core network routers to create a complete data transmission platform that provides real-time traffic information and enable prediction of future traffic conditions. However, the heterogeneity and complexity of the underlying ITS networks raise new challenges in intrusion prevention of mobile network nodes and detection of security attacks due to such highly vulnerable mobile nodes. In this paper, we consider a new type of security attack referred to as crossfire attack, which involves a large number of compromised nodes that generate low-intensity traffic in a temporally coordinated fashion such that target links or hosts (victims) are disconnected from the rest of the network. Detection of such attacks is challenging since the attacking traffic flows are indistinguishable from the legitimate flows. With the support of software-defined networking that enables dynamic network monitoring and traffic characteristic extraction, we develop a machine learning model that can learn the temporal correlation among traffic flows traversing in the ITS network, thus differentiating legitimate flows from coordinated attacking flows. We use different deep learning algorithms to train the model and study the performance using Mininet-WiFi emulation platform. The results show that our approach achieves a detection accuracy of at least 80%.

Citations (23)

Summary

We haven't generated a summary for this paper yet.