Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-order accurate diffuse-domain methods for partial differential equations with Dirichlet boundary conditions in complex, evolving geometries (1812.03613v2)

Published 10 Dec 2018 in math.NA and cs.NA

Abstract: The diffuse-domain, or smoothed boundary, method is an attractive approach for solving partial differential equations in complex geometries because of its simplicity and flexibility. In this method the complex geometry is embedded into a larger, regular domain. The original PDE is reformulated using a smoothed characteristic function of the complex domain and source terms are introduced to approximate the boundary conditions. The reformulated equation, which is independent of the dimension and domain geometry, can be solved by standard numerical methods and the same solver can be used for any domain geometry. A challenge is making the method higher-order accurate. For Dirichlet boundary conditions, which we focus on here, current implementations demonstrate a wide range in their accuracy but generally the methods yield at best first order accuracy in $\epsilon$, the parameter that characterizes the width of the region over which the characteristic function is smoothed. Typically, $\epsilon\propto h$, the grid size. Here, we analyze the diffuse-domain PDEs using matched asymptotic expansions and explain the observed behaviors. Our analysis also identifies simple modifications to the diffuse-domain PDEs that yield higher-order accuracy in $\epsilon$, e.g., $O(\epsilon2)$ in the $L2$ norm and $O(\epsilonp)$ with $1.5\le p\le 2$ in the $L{\infty}$ norm. Our analytic results are confirmed numerically in stationary and moving domains where the level set method is used to capture the dynamics of the domain boundary and to construct the smoothed characteristic function.

Citations (15)

Summary

We haven't generated a summary for this paper yet.