Papers
Topics
Authors
Recent
2000 character limit reached

Metric-affine Gravity and Inflation

Published 9 Dec 2018 in gr-qc, astro-ph.CO, and hep-th | (1812.03420v2)

Abstract: We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations for the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.

Citations (70)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.