Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer learning for vision-based tactile sensing (1812.03163v3)

Published 7 Dec 2018 in cs.RO

Abstract: Due to the complexity of modeling the elastic properties of materials, the use of machine learning algorithms is continuously increasing for tactile sensing applications. Recent advances in deep neural networks applied to computer vision make vision-based tactile sensors very appealing for their high-resolution and low cost. A soft optical tactile sensor that is scalable to large surfaces with arbitrary shape is discussed in this paper. A supervised learning algorithm trains a model that is able to reconstruct the normal force distribution on the sensor's surface, purely from the images recorded by an internal camera. In order to reduce the training times and the need for large datasets, a calibration procedure is proposed to transfer the acquired knowledge across multiple sensors while maintaining satisfactory performance.

Citations (22)

Summary

We haven't generated a summary for this paper yet.