Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Per-Flow Cardinality Estimation Based On Virtual LogLog Sketching (1812.03040v1)

Published 30 Nov 2018 in cs.IT and math.IT

Abstract: Flow cardinality estimation is the problem of estimating the number of distinct elements in a data flow, often with a stringent memory constraint. It has wide applications in network traffic measurement and in database systems. The virtual LogLog algorithm proposed recently by Xiao, Chen, Chen and Ling estimates the cardinalities of a large number of flows with a compact memory. The purpose of this thesis is to explore two new perspectives on the estimation process of this algorithm. Firstly, we propose and investigate a family of estimators that generalizes the original vHLL estimator and evaluate the performance of the vHLL estimator compared to other estimators in this family. Secondly, we propose an alternative solution to the estimation problem by deriving a maximum-likelihood estimator. Empirical evidence from both perspectives suggests the near-optimality of the vHLL estimator for per-flow estimation, analogous to the near-optimality of the HLL estimator for single-flow estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.