Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scale-free network clustering in hyperbolic and other random graphs (1812.03002v1)

Published 7 Dec 2018 in physics.soc-ph, cs.SI, and math.PR

Abstract: Random graphs with power-law degrees can model scale-free networks as sparse topologies with strong degree heterogeneity. Mathematical analysis of such random graphs proved successful in explaining scale-free network properties such as resilience, navigability and small distances. We introduce a variational principle to explain how vertices tend to cluster in triangles as a function of their degrees. We apply the variational principle to the hyperbolic model that quickly gains popularity as a model for scale-free networks with latent geometries and clustering. We show that clustering in the hyperbolic model is non-vanishing and self-averaging, so that a single random graph sample is a good representation in the large-network limit. We also demonstrate the variational principle for some classical random graphs including the preferential attachment model and the configuration model.

Citations (11)

Summary

We haven't generated a summary for this paper yet.