Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ShuffleNASNets: Efficient CNN models through modified Efficient Neural Architecture Search (1812.02975v1)

Published 7 Dec 2018 in cs.LG and stat.ML

Abstract: Neural network architectures found by sophistic search algorithms achieve strikingly good test performance, surpassing most human-crafted network models by significant margins. Although computationally efficient, their design is often very complex, impairing execution speed. Additionally, finding models outside of the search space is not possible by design. While our space is still limited, we implement undiscoverable expert knowledge into the economic search algorithm Efficient Neural Architecture Search (ENAS), guided by the design principles and architecture of ShuffleNet V2. While maintaining baseline-like 2.85% test error on CIFAR-10, our ShuffleNASNets are significantly less complex, require fewer parameters, and are two times faster than the ENAS baseline in a classification task. These models also scale well to a low parameter space, achieving less than 5% test error with little regularization and only 236K parameters.

Citations (9)

Summary

We haven't generated a summary for this paper yet.