Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Limitations of Model Uncertainty in Adversarial Settings (1812.02606v2)

Published 6 Dec 2018 in cs.CR and cs.LG

Abstract: Machine learning models are vulnerable to adversarial examples: minor perturbations to input samples intended to deliberately cause misclassification. While an obvious security threat, adversarial examples yield as well insights about the applied model itself. We investigate adversarial examples in the context of Bayesian neural network's (BNN's) uncertainty measures. As these measures are highly non-smooth, we use a smooth Gaussian process classifier (GPC) as substitute. We show that both confidence and uncertainty can be unsuspicious even if the output is wrong. Intriguingly, we find subtle differences in the features influencing uncertainty and confidence for most tasks.

Citations (33)

Summary

We haven't generated a summary for this paper yet.