Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Fourier Transform of Truncated Multi-Soliton Pulses (1812.02048v1)

Published 5 Dec 2018 in cs.IT, eess.SP, and math.IT

Abstract: Multi-soliton pulses, as special solutions of the Nonlinear Schroedinger Equation (NLSE), are potential candidates for optical fiber transmission where the information is modulated and recovered in the so-called nonlinear Fourier domain. For data communication, the exponentially decaying tails of a multi-soliton must be truncated. Such a windowing changes the nonlinear Fourier spectrum of the pulse. The results of this paper are twofold: (i) we derive the simple closed-form expressions for the nonlinear spectrum, discrete and continuous spectrum, of a symmetrically truncated multi-soliton pulse from tight approximation of the truncated tails. We numerically show the accuracy of the closed-form expressions. (ii) We show how to find, in general, the eigenvalues of the discrete spectrum from the continuous spectrum. We present this method for the application in hand.

Citations (3)

Summary

We haven't generated a summary for this paper yet.