Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Mismatch Robust Acoustic Scene Classification using Channel Information Conversion (1812.01731v1)

Published 4 Dec 2018 in cs.SD and eess.AS

Abstract: In a recent acoustic scene classification (ASC) research field, training and test device channel mismatch have become an issue for the real world implementation. To address the issue, this paper proposes a channel domain conversion using factorized hierarchical variational autoencoder. Proposed method adapts both the source and target domain to a pre-defined specific domain. Unlike the conventional approach, the relationship between the target and source domain and information of each domain are not required in the adaptation process. Based on the experimental results using the IEEE detection and classification of acoustic scenes and event 2018 task 1-B dataset and the baseline system, it is shown that the proposed approach can mitigate the channel mismatching issue of different recording devices.

Citations (21)

Summary

We haven't generated a summary for this paper yet.