Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

A Semismooth Predictor Corrector Method for Real-Time Constrained Parametric Optimization with Applications in Model Predictive Control (1812.01634v1)

Published 4 Dec 2018 in math.OC and cs.SY

Abstract: Real-time optimization problems are ubiquitous in control and estimation, and are typically parameterized by incoming measurement data and/or operator commands. This paper proposes solving parameterized constrained nonlinear programs using a semismooth predictor-corrector (SSPC) method. Nonlinear complementarity functions are used to reformulate the first order necessary conditions of the optimization problem into a parameterized non-smooth root-finding problem. Starting from an approximate solution, a semismooth Euler-Newton algorithm is proposed for tracking the trajectory of the primal-dual solution as the parameter varies over time. Active set changes are naturally handled by the SSPC method, which only requires the solution of linear systems of equations. The paper establishes conditions under which the solution trajectories of the root-finding problem are well behaved and provides sufficient conditions for ensuring boundedness of the tracking error. Numerical case studies featuring the application of the SSPC method to nonlinear model predictive control are reported and demonstrate the advantages of the proposed method.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.