Ways of Destruction (1812.01480v1)
Abstract: We study the following natural strong variant of destroying Borel ideals: $\mathbb{P}$ $\textit{$+$-destroys}$ $\mathcal{I}$ if $\mathbb{P}$ adds an $\mathcal{I}$-positive set which has finite intersection with every $A\in\mathcal{I}\cap V$. Also, we discuss the associated variants \begin{align*} \mathrm{non}*(\mathcal{I},+)=&\min\big{|\mathcal{Y}|:\mathcal{Y}\subseteq\mathcal{I}+,\; \forall\;A\in\mathcal{I}\;\exists\;Y\in\mathcal{Y}\;|A\cap Y|<\omega\big}\ \mathrm{cov}*(\mathcal{I},+)=&\min\big{|\mathcal{C}|:\mathcal{C}\subseteq\mathcal{I},\; \forall\;Y\in\mathcal{I}+\;\exists\;C\in\mathcal{C}\;|Y\cap C|=\omega\big} \end{align*} of the star-uniformity and the star-covering numbers of these ideals. Among other results, (1) we give a simple combinatorial characterisation when a real forcing $\mathbb{P}_I$ can $+$-destroy a Borel ideal $\mathcal{J}$; (2) we discuss many classical examples of Borel ideals, their $+$-destructibility, and cardinal invariants; (3) we show that the Mathias-Prikry, $\mathbb{M}(\mathcal{I}*)$-generic real $+$-destroys $\mathcal{I}$ iff $\mathbb{M}(\mathcal{I}*)$ $+$-destroys $\mathcal{I}$ iff $\mathcal{I}$ can be $+$-destroyed iff $\mathrm{cov}*(\mathcal{I},+)>\omega$; (4) we characterise when the Laver-Prikry, $\mathbb{L}(\mathcal{I}*)$-generic real $+$-destroys $\mathcal{I}$, and in the case of P-ideals, when exactly $\mathbb{L}(\mathcal{I}*)$ $+$-destroys $\mathcal{I}$; (5) we briefly discuss an even stronger form of destroying ideals closely related to the additivity of the null ideal.