Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test of Covariance and Correlation Matrices (1812.01172v1)

Published 4 Dec 2018 in stat.ME

Abstract: Based on a generalized cosine measure between two symmetric matrices, we propose a general framework for one-sample and two-sample tests of covariance and correlation matrices. We also develop a set of associated permutation algorithms for some common one-sample tests, such as the tests of sphericity, identity and compound symmetry, and the $K$-sample tests of multivariate equality of covariance or correlation matrices. The proposed method is very flexible in the sense that it does not assume any underlying distributions and data generation models. Moreover, it allows data to have different marginal distributions in both the one-sample identity and $K$-sample tests. Through real datasets and extensive simulations, we demonstrate that the proposed method performs well in terms of empirical type I error and power in a variety of hypothesis testing situations in which data of different sizes and dimensions are generated using different distributions and generation models.

Summary

We haven't generated a summary for this paper yet.