Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Goldman-Turaev formality implies Kashiwara-Vergne (1812.01159v1)

Published 4 Dec 2018 in math.GT, math.AT, and math.QA

Abstract: Let $\Sigma$ be a compact connected oriented 2-dimensional manifold with non-empty boundary. In our previous work, we have shown that the solution of generalized (higher genus) Kashiwara-Vergne equations for an automorphism $F \in {\rm Aut}(L)$ of a free Lie algebra implies an isomorphism between the Goldman-Turaev Lie bialgebra $\mathfrak{g}(\Sigma)$ and its associated graded ${\rm gr}\, \mathfrak{g}(\Sigma)$. In this paper, we prove the converse: if $F$ induces an isomorphism $\mathfrak{g}(\Sigma) \cong {\rm gr} \, \mathfrak{g}(\Sigma)$, then it satisfies the Kashiwara-Vergne equations up to conjugation. As an application of our results, we compute the degree one non-commutative Poisson cohomology of the Kirillov-Kostant-Souriau double bracket. The main technical tool used in the paper is a novel characterization of conjugacy classes in the free Lie algebra in terms of cyclic words.

Summary

We haven't generated a summary for this paper yet.