Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QR code denoising using parallel Hopfield networks (1812.01065v2)

Published 3 Dec 2018 in cs.CV and cs.LG

Abstract: We propose a novel algorithm for using Hopfield networks to denoise QR codes. Hopfield networks have mostly been used as a noise tolerant memory or to solve difficult combinatorial problems. One of the major drawbacks in their use in noise tolerant associative memory is their low capacity of storage, scaling only linearly with the number of nodes in the network. A larger capacity therefore requires a larger number of nodes, thereby reducing the speed of convergence of the network in addition to increasing hardware costs for acquiring more precise data to be fed to a larger number of nodes. Our paper proposes a new algorithm to allow the use of several Hopfield networks in parallel thereby increasing the cumulative storage capacity of the system many times as compared to a single Hopfield network. Our algorithm would also be much faster than a larger single Hopfield network with the same total capacity. This enables their use in applications like denoising QR codes, which we have demonstrated in our paper. We then test our network on a large set of QR code images with different types of noise and demonstrate that such a system of Hopfield networks can be used to denoise and recognize QR codes in real time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.