Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Intelligent Transportation Systems (1812.00979v1)

Published 3 Dec 2018 in cs.LG and stat.ML

Abstract: Intelligent Transportation Systems (ITSs) are envisioned to play a critical role in improving traffic flow and reducing congestion, which is a pervasive issue impacting urban areas around the globe. Rapidly advancing vehicular communication and edge cloud computation technologies provide key enablers for smart traffic management. However, operating viable real-time actuation mechanisms on a practically relevant scale involves formidable challenges, e.g., policy iteration and conventional Reinforcement Learning (RL) techniques suffer from poor scalability due to state space explosion. Motivated by these issues, we explore the potential for Deep Q-Networks (DQN) to optimize traffic light control policies. As an initial benchmark, we establish that the DQN algorithms yield the "thresholding" policy in a single-intersection. Next, we examine the scalability properties of DQN algorithms and their performance in a linear network topology with several intersections along a main artery. We demonstrate that DQN algorithms produce intelligent behavior, such as the emergence of "greenwave" patterns, reflecting their ability to learn favorable traffic light actuations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiao-Yang Liu (62 papers)
  2. Zihan Ding (38 papers)
  3. Sem Borst (25 papers)
  4. Anwar Walid (21 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.