Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building robust classifiers through generation of confident out of distribution examples (1812.00239v1)

Published 1 Dec 2018 in stat.ML and cs.LG

Abstract: Deep learning models are known to be overconfident in their predictions on out of distribution inputs. There have been several pieces of work to address this issue, including a number of approaches for building Bayesian neural networks, as well as closely related work on detection of out of distribution samples. Recently, there has been work on building classifiers that are robust to out of distribution samples by adding a regularization term that maximizes the entropy of the classifier output on out of distribution data. To approximate out of distribution samples (which are not known apriori), a GAN was used for generation of samples at the edges of the training distribution. In this paper, we introduce an alternative GAN based approach for building a robust classifier, where the idea is to use the GAN to explicitly generate out of distribution samples that the classifier is confident on (low entropy), and have the classifier maximize the entropy for these samples. We showcase the effectiveness of our approach relative to state-of-the-art on hand-written characters as well as on a variety of natural image datasets.

Citations (28)

Summary

We haven't generated a summary for this paper yet.