Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimized Portfolio Contracts for Bidding the Cloud (1811.12901v1)

Published 30 Nov 2018 in cs.DC and cs.NI

Abstract: Amazon EC2 provides two most popular pricing schemes--i) the {\em costly} on-demand instance where the job is guaranteed to be completed, and ii) the {\em cheap} spot instance where a job may be interrupted. We consider a user can select a combination of on-demand and spot instances to finish a task. Thus he needs to find the optimal bidding price for the spot-instance, and the portion of the job to be run on the on-demand instance. We formulate the problem as an optimization problem and seek to find the optimal solution. We consider three bidding strategies: one-time requests with expected guarantee and one-time requests with penalty for incomplete job and violating the deadline, and persistent requests. Even without a penalty on incomplete jobs, the optimization problem turns out to be non-convex. Nevertheless, we show that the portion of the job to be run on the on-demand instance is at most half. If the job has a higher execution time or smaller deadline, the bidding price is higher and vice versa. Additionally, the user never selects the on-demand instance if the execution time is smaller than the deadline. The numerical results illustrate the sensitivity of the effective portfolio to several of the parameters involved in the model. Our empirical analysis on the Amazon EC2 data shows that our strategies can be employed on the real instances, where the expected total cost of the proposed scheme decreases over 45\% compared to the baseline strategy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.