Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Radial averaging operator acting on Bergman and Lebesgue spaces (1811.12745v1)

Published 30 Nov 2018 in math.CV

Abstract: It is shown that the radial averaging operator $$ T_\omega(f)(z)=\frac{\int_{|z|}1f\left(s\frac{z}{|z|}\right)\omega(s)\,ds}{\widehat{\omega}(z)},\quad \widehat{\omega}(z)=\int_{|z|}1\omega(s)\,ds, $$ induced by a radial weight $\omega$ on the unit disc $\mathbb{D}$, is bounded from the weighted Bergman space $Ap_\nu$, where $0<p<\infty$ and the radial weight $\nu$ satisfies $\widehat{\nu}(r)\leq C\widehat{\nu}\left(\frac{1+r}{2}\right)$ for all $0\leq r\<1$, to $L^p_\nu$ if and only if the self-improving condition $\sup_{0\leq r\<1}\frac{\widehat{\omega}(r)^p}{\int_{r}^1 s\nu(s)\,ds}\int_0^r\frac{t\nu(t)}{\widehat{\omega}(t)^p}\,dt<\infty$ is satisfied. Further, two characterizations of the weak type inequality $$ \eta \left(\left\{ z\in\mathbb{D} : |T_\omega(f)(z)|\geq\lambda\right\}\right)\lesssim\lambda^{-p} \| f\|_{L^p_\nu}^p,\quad \lambda\>0, $$ are established for arbitrary radial weights $\omega$, $\nu$ and $\eta$. Moreover, differences and interrelationships between the cases $Ap_\nu\to Lp_\nu$, $Lp_\nu\to Lp_\nu$ and $Lp_\nu\to L{p,\infty}_\nu$ are analyzed.

Summary

We haven't generated a summary for this paper yet.