Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks (1811.12351v1)

Published 29 Nov 2018 in cs.LG and stat.ML

Abstract: Complex-valued neural networks are not a new concept, however, the use of real-valued models has often been favoured over complex-valued models due to difficulties in training and performance. When comparing real-valued versus complex-valued neural networks, existing literature often ignores the number of parameters, resulting in comparisons of neural networks with vastly different sizes. We find that when real and complex neural networks of similar capacity are compared, complex models perform equal to or slightly worse than real-valued models for a range of real-valued classification tasks. The use of complex numbers allows neural networks to handle noise on the complex plane. When classifying real-valued data with a complex-valued neural network, the imaginary parts of the weights follow their real parts. This behaviour is indicative for a task that does not require a complex-valued model. We further investigated this in a synthetic classification task. We can transfer many activation functions from the real to the complex domain using different strategies. The weight initialisation of complex neural networks, however, remains a significant problem.

Citations (25)

Summary

We haven't generated a summary for this paper yet.