Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Implementation of the Poisson Multi-Bernoulli Mixture Trajectory Filter via Dual Decomposition (1811.12281v1)

Published 29 Nov 2018 in eess.SP

Abstract: This paper proposes an efficient implementation of the Poisson multi-Bernoulli mixture (PMBM) trajectory filter. The proposed implementation performs track-oriented N-scan pruning to limit complexity, and uses dual decomposition to solve the involved multi-frame assignment problem. In contrast to the existing PMBM filter for sets of targets, the PMBM trajectory filter is based on sets of trajectories which ensures that track continuity is formally maintained. The resulting filter is an efficient and scalable approximation to a Bayes optimal multi-target tracking algorithm, and its performance is compared, in a simulation study, to the PMBM target filter, and the delta generalized labelled multi-Bernoulli filter, in terms of state/trajectory estimation error and computational time.

Summary

We haven't generated a summary for this paper yet.