Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Transferability of Representations in Neural Networks Between Datasets and Tasks (1811.12273v1)

Published 29 Nov 2018 in cs.LG and stat.ML

Abstract: Deep networks, composed of multiple layers of hierarchical distributed representations, tend to learn low-level features in initial layers and transition to high-level features towards final layers. Paradigms such as transfer learning, multi-task learning, and continual learning leverage this notion of generic hierarchical distributed representations to share knowledge across datasets and tasks. Herein, we study the layer-wise transferability of representations in deep networks across a few datasets and tasks and note some interesting empirical observations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.