Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shifted quantum affine algebras: integral forms in type $A$ (with appendices by Alexander Tsymbaliuk and Alex Weekes) (1811.12137v4)

Published 29 Nov 2018 in math.RT, math-ph, math.AG, math.MP, and math.QA

Abstract: We define an integral form of shifted quantum affine algebras of type $A$ and construct Poincar\'e-Birkhoff-Witt-Drinfeld bases for them. When the shift is trivial, our integral form coincides with the RTT integral form. We prove that these integral forms are closed with respect to the coproduct and shift homomorphisms. We prove that the homomorphism from our integral form to the corresponding quantized $K$-theoretic Coulomb branch of a quiver gauge theory is always surjective. In one particular case we identify this Coulomb branch with the extended quantum universal enveloping algebra of type $A$. Finally, we obtain the rational (homological) analogues of the above results (proved earlier in arXiv:1611.06775, arXiv:1806.07519 via different techniques).

Summary

We haven't generated a summary for this paper yet.