Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilayer coevolution dynamics of the nonlinear voter model (1811.12136v1)

Published 29 Nov 2018 in nlin.AO, cond-mat.stat-mech, and physics.soc-ph

Abstract: We study a coevolving nonlinear voter model on a two-layer network. Coevolution stands for coupled dynamics of the state of the nodes and of the topology of the network in each layer. The plasticity parameter p measures the relative time scale of the evolution of the states of the nodes and the evolution of the network by link rewiring. Nonlinearity of the interactions is taken into account through a parameter q that describes the nonlinear effect of local majorities, being q = 1 the marginal situation of the ordinary voter model. Finally the connection between the two layers is measured by a degree of multiplexing . In terms of these three parameters, p, q and we find a rich phase diagram with different phases and transitions. When the two layers have the same plasticity p, the fragmentation transition observed in a single layer is shifted to larger values of p plasticity, so that multiplexing avoids fragmentation. Different plasticities for the two layers lead to new phases that do not exist in a coevolving nonlinear voter model in a single layer, namely an asymmetric fragmented phase for q > 1 and an active shattered phase for q < 1. Coupling layers with dfferent types of nonlinearity, q1 < 1 and q2 > 1, we can find two different transitions by increasing the plasticity parameter, a first absorbing transition with no fragmentation and a subsequent fragmentation transition.

Summary

We haven't generated a summary for this paper yet.