Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Determination of a Class of Permutation Trinomials in Characteristic Three (1811.11949v2)

Published 29 Nov 2018 in math.NT

Abstract: Let $f(X)=X(1+aX{q(q-1)}+bX{2(q-1)})\in\Bbb F_{q2}[X]$, where $a,b\in\Bbb F_{q2}*$. In a series of papers by several authors, sufficient conditions on $a$ and $b$ were found for $f$ to be a permutation polynomial (PP) of $\Bbb F_{q2}$ and, in characteristic $2$, the sufficient conditions were shown to be necessary. In the present paper, we confirm that in characteristic 3, the sufficient conditions are also necessary. More precisely, we show that when $\text{char}\,\Bbb F_q=3$, $f$ is a PP of $\Bbb F_{q2}$ if and only if $(ab)q=a(b{q+1}-a{q+1})$ and $1-(b/a){q+1}$ is a square in $\Bbb F_q*$.

Summary

We haven't generated a summary for this paper yet.