Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Machine Learning And Speech Emotion Recognition: Utilizing Generative Adversarial Networks For Robustness (1811.11402v2)

Published 28 Nov 2018 in cs.LG, cs.CR, eess.SP, and stat.ML

Abstract: Deep learning has undoubtedly offered tremendous improvements in the performance of state-of-the-art speech emotion recognition (SER) systems. However, recent research on adversarial examples poses enormous challenges on the robustness of SER systems by showing the susceptibility of deep neural networks to adversarial examples as they rely only on small and imperceptible perturbations. In this study, we evaluate how adversarial examples can be used to attack SER systems and propose the first black-box adversarial attack on SER systems. We also explore potential defenses including adversarial training and generative adversarial network (GAN) to enhance robustness. Experimental evaluations suggest various interesting aspects of the effective utilization of adversarial examples useful for achieving robustness for SER systems opening up opportunities for researchers to further innovate in this space.

Citations (41)

Summary

We haven't generated a summary for this paper yet.