Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust active attacks on social graphs (1811.10915v1)

Published 27 Nov 2018 in cs.SI

Abstract: In order to prevent the disclosure of privacy-sensitive data, such as names and relations between users, social network graphs have to be anonymised before publication. Naive anonymisation of social network graphs often consists in deleting all identifying information of the users, while maintaining the original graph structure. Various types of attacks on naively anonymised graphs have been developed. Active attacks form a special type of such privacy attacks, in which the adversary enrols a number of fake users, often called sybils, to the social network, allowing the adversary to create unique structural patterns later used to re-identify the sybil nodes and other users after anonymisation. Several studies have shown that adding a small amount of noise to the published graph already suffices to mitigate such active attacks. Consequently, active attacks have been dubbed a negligible threat to privacy-preserving social graph publication. In this paper, we argue that these studies unveil shortcomings of specific attacks, rather than inherent problems of active attacks as a general strategy. In order to support this claim, we develop the notion of a robust active attack, which is an active attack that is resilient to small perturbations of the social network graph. We formulate the design of robust active attacks as an optimisation problem and we give definitions of robustness for different stages of the active attack strategy. Moreover, we introduce various heuristics to achieve these notions of robustness and experimentally show that the new robust attacks are considerably more resilient than the original ones, while remaining at the same level of feasibility.

Citations (9)

Summary

We haven't generated a summary for this paper yet.