Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Intolerance Intervals and Size Bounds for a Schelling-Type Spin System (1811.10677v1)

Published 24 Oct 2018 in cs.SI, math-ph, and math.MP

Abstract: We consider a Schelling model of self-organized segregation in an open system that is equivalent to a zero-temperature Ising model with Glauber dynamics, or an Asynchronous Cellular Automaton (ACA) with extended Moore neighborhoods. Previous work has shown that if the intolerance parameter of the model $\tau\in (\sim 0.488,\sim 0.512) \setminus {1/2}$, then for a sufficiently large neighborhood of interaction $N$, any particle will end up in an exponentially large monochromatic region almost surely. This paper extends the above result to the interval $\tau \in (\sim 0.433,\sim 0.567) \setminus {1/2}$. We also improve the bounds on the size of the monochromatic region by exponential factors in $N$. Finally, we show that when particles are placed on the infinite lattice $\mathbb{Z}2$ rather than on a flat torus, for the values of $\tau$ mentioned above, sufficiently large $N$, and after a sufficiently long evolution time, any particle is contained in a large monochromatic region of size exponential in $N$, almost surely. The new proof, critically relies on a novel geometric construction related to the formation of the monochromatic region.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hamed Omidvar (4 papers)
  2. Massimo Franceschetti (41 papers)
Citations (1)