Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the size of the maximum of incomplete Kloosterman sums (1811.10563v1)

Published 26 Nov 2018 in math.NT

Abstract: Let $t:\mathbb{F}{p}\rightarrow\mathbb{C}$ be a complex valued function on $\mathbb{F}{p}$. A classical problem in analytic number theory is to bound the maximum of the absolute value of the incomplete sum [ M(t):=\max_{0\leq H<p}\Big|\frac{1}{\sqrt{p}}\sum_{0\leq n < H}t(n)\Big|. \] In this very general context one of the most important results is the P\'olya-Vinogradov bound \[ M(t)\leq \left\|K\right\|_{\infty}\log 3p. \] where $K:\mathbb{F}_{p}\rightarrow\mathbb{C}$ is the normalized Fourier transform of $t$. In this paper we provide a lower bound for incomplete Kloosterman sum, namely we prove that for any $\varepsilon \>0$ there exists some $a\in\mathbb{F}{p}{\times}$ such that [ M(e(\tfrac{ax+\overline{x}}{p}))\geq \Big(\frac{1-\varepsilon}{\sqrt{2}\pi}+o(1)\Big)\log\log p. ] Moreover we also provide some result on the growth of the moments of ${M(e(\tfrac{ax+\overline{x}}{p}))}{a\in\mathbb{F}_{p}{\times}}$.

Summary

We haven't generated a summary for this paper yet.