Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-Time Sleep Staging using Deep Learning on a Smartphone for a Wearable EEG (1811.10111v2)

Published 25 Nov 2018 in cs.HC, cs.LG, eess.SP, and q-bio.NC

Abstract: We present the first real-time sleep staging system that uses deep learning without the need for servers in a smartphone application for a wearable EEG. We employ real-time adaptation of a single channel Electroencephalography (EEG) to infer from a Time-Distributed 1-D Deep Convolutional Neural Network. Polysomnography (PSG)-the gold standard for sleep staging, requires a human scorer and is both complex and resource-intensive. Our work demonstrates an end-to-end on-smartphone pipeline that can infer sleep stages in just single 30-second epochs, with an overall accuracy of 83.5% on 20-fold cross validation for five-class classification of sleep stages using the open Sleep-EDF dataset.

Citations (13)

Summary

We haven't generated a summary for this paper yet.