Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential Separation between Quantum Communication and Logarithm of Approximate Rank (1811.10090v1)

Published 25 Nov 2018 in quant-ph and cs.CC

Abstract: Chattopadhyay, Mande and Sherif (ECCC 2018) recently exhibited a total Boolean function, the sink function, that has polynomial approximate rank and polynomial randomized communication complexity. This gives an exponential separation between randomized communication complexity and logarithm of the approximate rank, refuting the log-approximate-rank conjecture. We show that even the quantum communication complexity of the sink function is polynomial, thus also refuting the quantum log-approximate-rank conjecture. Our lower bound is based on the fooling distribution method introduced by Rao and Sinha (ECCC 2015) for the classical case and extended by Anshu, Touchette, Yao and Yu (STOC 2017) for the quantum case. We also give a new proof of the classical lower bound using the fooling distribution method.

Citations (14)

Summary

We haven't generated a summary for this paper yet.