Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasisymmetric uniformization and Hausdorff dimensions of Cantor circle Julia sets (1811.10042v3)

Published 25 Nov 2018 in math.DS and math.CV

Abstract: For Cantor circle Julia sets of hyperbolic rational maps, we prove that they are quasisymmetrically equivalent to standard Cantor circles (i.e., connected components are round circles). This gives a quasisymmetric uniformization of all Cantor circle Julia sets of hyperbolic rational maps. By analyzing the combinatorial information of the rational maps whose Julia sets are Cantor circles, we give a computational formula of the number of the Cantor circle hyperbolic components in the moduli space of rational maps for any fixed degree. We calculate the Hausdorff dimensions of the Julia sets which are Cantor circles, and prove that for any Cantor circle hyperbolic component $\mathcal{H}$ in the space of rational maps, the infimum of the Hausdorff dimensions of the Julia sets of the maps in $\mathcal{H}$ is equal to the conformal dimension of the Julia set of any representative $f_0\in\mathcal{H}$, and that the supremum of the Hausdorff dimensions is equal to $2$.

Summary

We haven't generated a summary for this paper yet.