Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retirement spending and biological age (1811.09921v1)

Published 25 Nov 2018 in q-fin.MF

Abstract: We solve a lifecycle model in which the consumer's chronological age does not move in lockstep with calendar time. Instead, biological age increases at a stochastic non-linear rate in time like a broken clock that might occasionally move backwards. In other words, biological age could actually decline. Our paper is inspired by the growing body of medical literature that has identified biomarkers which indicate how people age at different rates. This offers better estimates of expected remaining lifetime and future mortality rates. It isn't farfetched to argue that in the not-too-distant future personal age will be more closely associated with biological vs. calendar age. Thus, after introducing our stochastic mortality model we derive optimal consumption rates in a classic Yaari (1965) framework adjusted to our proper clock time. In addition to the normative implications of having access to biological age, our positive objective is to partially explain the cross-sectional heterogeneity in retirement spending rates at any given chronological age. In sum, we argue that neither biological nor chronological age alone is a sufficient statistic for making economic decisions. Rather, both ages are required to behave rationally.

Summary

We haven't generated a summary for this paper yet.