Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Senti-Attend: Image Captioning using Sentiment and Attention (1811.09789v1)

Published 24 Nov 2018 in cs.CV

Abstract: There has been much recent work on image captioning models that describe the factual aspects of an image. Recently, some models have incorporated non-factual aspects into the captions, such as sentiment or style. However, such models typically have difficulty in balancing the semantic aspects of the image and the non-factual dimensions of the caption; in addition, it can be observed that humans may focus on different aspects of an image depending on the chosen sentiment or style of the caption. To address this, we design an attention-based model to better add sentiment to image captions. The model embeds and learns sentiment with respect to image-caption data, and uses both high-level and word-level sentiment information during the learning process. The model outperforms the state-of-the-art work in image captioning with sentiment using standard evaluation metrics. An analysis of generated captions also shows that our model does this by a better selection of the sentiment-bearing adjectives and adjective-noun pairs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Omid Mohamad Nezami (8 papers)
  2. Mark Dras (38 papers)
  3. Stephen Wan (10 papers)
  4. Cecile Paris (34 papers)
Citations (15)