2000 character limit reached
Semiclassical asymptotic behavior of orthogonal polynomials (1811.09254v2)
Published 22 Nov 2018 in math.CA, math.FA, and math.SP
Abstract: Our goal is to find asymptotic formulas for orthonormal polynomials $P_{n}(z)$ with the recurrence coefficients slowly stabilizing as $n\to\infty$. To that end, we develop spectral theory of Jacobi operators with long-range coefficients and study the corresponding second order difference equation. We suggest an Ansatz for its solutions playing the role of the semiclassical Green-Liouville Ansatz for solutions of the Schr\"odinger equation. The formulas obtained for $P_{n}(z)$ as $n\to\infty$ generalize the classical Bernstein-Szeg\"o asymptotic formulas.