Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathcal{H}_p$-theory of general Dirichlet series (1811.09182v3)

Published 22 Nov 2018 in math.FA

Abstract: Inspired by results of Bayart on ordinary Dirichlet series $\sum a_n n{-s}$, the main purpose of this article is to start an $\mathcal{H}p$-theory of general Dirichlet series $\sum a_n e{-\lambda{n}s}$. Whereas the $\mathcal{H}_p$-theory of ordinary Dirichlet series, in view of an ingenious identification of Bohr, can be seen as a sub-theory of Fourier analysis on the infinite dimensional torus $\mathbb{T}\infty$, the $\mathcal{H}_p$-theory of general Dirichlet series is build as a sub-theory of Fourier analysis on certain compact abelian groups, including the Bohr compactification $\overline{\mathbb{R}}$ of the reals. Our approach allows to extend various important facts on Hardy spaces of ordinary Dirichlet series to the much wider setting of $\mathcal{H}_p$-spaces of general Dirichlet series.

Summary

We haven't generated a summary for this paper yet.