Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Forecasting of Crude Oil Spot Prices using Neural Networks (1811.08963v1)

Published 21 Nov 2018 in cs.LG and stat.ML

Abstract: Crude oil is a major component in most advanced economies of the world. Accurately predicting and understanding the behavior of crude oil prices is important for economists, analysts, forecasters, and traders, to name a few. The price of crude oil has declined in the past decade and is seeing a phase of stability; but will this stability last? This work is an empirical study on how multivariate analysis may be employed to predict crude oil spot prices using neural networks. The concept of using neural networks showed promising potential. A very simple neural network model was able to perform on par with ARIMA models - the state-of-the-art model in time-series forecasting. Advanced neural network models using larger datasets may be used in the future to extend this proof-of-concept to a full scale framework.

Citations (3)

Summary

We haven't generated a summary for this paper yet.