Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Partition Refinement and Weighted Tree Automata (1811.08850v3)

Published 21 Nov 2018 in cs.DS

Abstract: Partition refinement is a method for minimizing automata and transition systems of various types. Recently, we have developed a partition refinement algorithm that is generic in the transition type of the given system and matches the run time of the best known algorithms for many concrete types of systems, e.g. deterministic automata as well as ordinary, weighted, and probabilistic (labelled) transition systems. Genericity is achieved by modelling transition types as functors on sets, and systems as coalgebras. In the present work, we refine the run time analysis of our algorithm to cover additional instances, notably weighted automata and, more generally, weighted tree automata. For weights in a cancellative monoid we match, and for non-cancellative monoids such as (the additive monoid of) the tropical semiring even substantially improve, the asymptotic run time of the best known algorithms. We have implemented our algorithm in a generic tool that is easily instantiated to concrete system types by implementing a simple refinement interface. Moreover, the algorithm and the tool are modular, and partition refiners for new types of systems are obtained easily by composing pre-implemented basic functors. Experiments show that even for complex system types, the tool is able to handle systems with millions of transitions.

Summary

We haven't generated a summary for this paper yet.