Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distinguishing correlation from causation using genome-wide association studies (1811.08803v1)

Published 21 Nov 2018 in stat.ME, cs.LG, and stat.ML

Abstract: Genome-wide association studies (GWAS) have emerged as a rich source of genetic clues into disease biology, and they have revealed strong genetic correlations among many diseases and traits. Some of these genetic correlations may reflect causal relationships. We developed a method to quantify causal relationships between genetically correlated traits using GWAS summary association statistics. In particular, our method quantifies what part of the genetic component of trait 1 is also causal for trait 2 using mixed fourth moments $E(\alpha_12\alpha_1\alpha_2)$ and $E(\alpha_22\alpha_1\alpha_2)$ of the bivariate effect size distribution. If trait 1 is causal for trait 2, then SNPs affecting trait 1 (large $\alpha_12$) will have correlated effects on trait 2 (large $\alpha_1\alpha_2$), but not vice versa. We validated this approach in extensive simulations. Across 52 traits (average $N=331$k), we identified 30 putative genetically causal relationships, many novel, including an effect of LDL cholesterol on decreased bone mineral density. More broadly, we demonstrate that it is possible to distinguish between genetic correlation and causation using genetic association data.

Summary

We haven't generated a summary for this paper yet.