Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Re-ranking of Deep Feature for Person Re-identification (1811.08561v1)

Published 21 Nov 2018 in cs.CV and cs.LG

Abstract: Typical person re-identification (re-ID) methods train a deep CNN to extract deep features and combine them with a distance metric for the final evaluation. In this work, we focus on exploiting the full information encoded in the deep feature to boost the re-ID performance. First, we propose a Deep Feature Fusion (DFF) method to exploit the diverse information embedded in a deep feature. DFF treats each sub-feature as an information carrier and employs a diffusion process to exchange their information. Second, we propose an Adaptive Re-Ranking (ARR) method to exploit the contextual information encoded in the features of neighbors. ARR utilizes the contextual information to re-rank the retrieval results in an iterative manner. Particularly, it adds more contextual information after each iteration automatically to consider more matches. Third, we propose a strategy that combines DFF and ARR to enhance the performance. Extensive comparative evaluations demonstrate the superiority of the proposed methods on three large benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.