Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The phase structure of asymmetric ballistic annihilation (1811.08378v10)

Published 20 Nov 2018 in math.PR

Abstract: Ballistic annihilation is an interacting system in which particles placed throughout the real line move at preassigned velocities and annihilate upon colliding. The longstanding conjecture that in the symmetric three-velocity setting there exists a phase transition for the survival of middle-velocity particles was recently resolved by Haslegrave, Sidoravicius, and Tournier. We develop a framework based on a mass transport principle to analyze three-velocity ballistic annihilation with asymmetric velocities assigned according to an asymmetric probability measure. We show the existence of a phase transition in all cases by deriving universal bounds. In particular, all middle-speed particles perish almost surely if their initial density is less than 1/5, regardless of the velocities, relative densities, and spacing of initial particles. We additionally prove the continuity of several fundamental statistics as the probability measure is varied.

Summary

We haven't generated a summary for this paper yet.