Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of equivariant maps and application to entanglement detection (1811.08193v3)

Published 20 Nov 2018 in math-ph, math.MP, math.OA, and quant-ph

Abstract: We study equivariant linear maps between finite-dimensional matrix algebras, as introduced by Bhat. These maps satisfy an algebraic property which makes it easy to study their positivity or k-positivity. They are therefore particularly suitable for applications to entanglement detection in quantum information theory. We characterize their Choi matrices. In particular, we focus on a subfamily that we call (a, b)-unitarily equivariant. They can be seen as both a generalization of maps invariant under unitary conjugation as studied by Bhat and as a generalization of the equivariant maps studied by Collins et al. Using representation theory, we fully compute them and study their graphical representation, and show that they are basically enough to study all equivariant maps. We finally apply them to the problem of entanglement detection and prove that they form a sufficient (infinite) family of positive maps to detect all k-entangled density matrices.

Summary

We haven't generated a summary for this paper yet.