Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Quantum Multicollision-Finding Algorithm (1811.08097v3)

Published 20 Nov 2018 in cs.CR, cs.CC, cs.DS, and quant-ph

Abstract: The current paper improves the number of queries of the previous quantum multi-collision finding algorithms presented by Hosoyamada et al. at Asiacrypt 2017. Let an $l$-collision be a tuple of $l$ distinct inputs that result in the same output of a target function. In cryptology, it is important to study how many queries are required to find $l$-collisions for random functions of which domains are larger than ranges. The previous algorithm finds an $l$-collision for a random function by recursively calling the algorithm for finding $(l-1)$-collisions, and it achieves the average quantum query complexity of $O(N{(3{l-1}-1) / (2 \cdot 3{l-1})})$, where $N$ is the range size of target functions. The new algorithm removes the redundancy of the previous recursive algorithm so that different recursive calls can share a part of computations. The new algorithm finds an $l$-collision for random functions with the average quantum query complexity of $O(N{(2{l-1}-1) / (2{l}-1)})$, which improves the previous bound for all $l\ge 3$ (the new and previous algorithms achieve the optimal bound for $l=2$). More generally, the new algorithm achieves the average quantum query complexity of $O\left(c{3/2}_N N{\frac{2{l-1}-1}{ 2{l}-1}}\right)$ for a random function $f\colon X\to Y$ such that $|X| \geq l \cdot |Y| / c_N$ for any $1\le c_N \in o(N{\frac{1}{2l - 1}})$. With the same query complexity, it also finds a multiclaw for random functions, which is harder to find than a multicollision.

Citations (9)

Summary

We haven't generated a summary for this paper yet.