Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on long rainbow arithmetic progressions (1811.07989v1)

Published 19 Nov 2018 in math.CO

Abstract: Jungi\'{c} et al (2003) defined $T_{k}$ as the minimal number $t \in \mathbb{N}$ such that there is a rainbow arithmetic progression of length $k$ in every equinumerous $t$-coloring of $[t n]$ for every $n \in \mathbb{N}$. They proved that for every $k \geq 3$, $\lfloor \frac{k2}{4} \rfloor < T_{k} \leq \frac{k(k-1)2}{2}$ and conjectured that $T_{k} = \Theta(k2)$. We prove for all $\epsilon > 0$ that $T_{k} = O(k{5/2+\epsilon})$ using the K\H{o}v\'{a}ri-S\'{o}s-Tur\'{a}n theorem and Wigert's bound on the divisor function.

Summary

We haven't generated a summary for this paper yet.