Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model change detection with application to machine learning (1811.07957v1)

Published 19 Nov 2018 in stat.ML and cs.LG

Abstract: Model change detection is studied, in which there are two sets of samples that are independently and identically distributed (i.i.d.) according to a pre-change probabilistic model with parameter $\theta$, and a post-change model with parameter $\theta'$, respectively. The goal is to detect whether the change in the model is significant, i.e., whether the difference between the pre-change parameter and the post-change parameter $|\theta-\theta'|_2$ is larger than a pre-determined threshold $\rho$. The problem is considered in a Neyman-Pearson setting, where the goal is to maximize the probability of detection under a false alarm constraint. Since the generalized likelihood ratio test (GLRT) is difficult to compute in this problem, we construct an empirical difference test (EDT), which approximates the GLRT and has low computational complexity. Moreover, we provide an approximation method to set the threshold of the EDT to meet the false alarm constraint. Experiments with linear regression and logistic regression are conducted to validate the proposed algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.