Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal medication for tumors modeled by a Cahn-Hilliard-Brinkman equation (1811.07783v3)

Published 19 Nov 2018 in math.OC and math.AP

Abstract: In this paper, we study a distributed optimal control problem for a diffuse interface model for tumor growth. The model consists of a Cahn-Hilliard type equation for the phase field variable coupled to a reaction diffusion equation for the nutrient and a Brinkman type equation for the velocity. The system is equipped with homogeneous Neumann boundary conditions for the tumor variable and the chemical potential, Robin boundary conditions for the nutrient and a "no-friction" boundary condition for the velocity. The control acts as a medication by cytotoxic drugs and enters the phase field equation. The cost functional is of standard tracking type and is designed to track the variables of the state equation during the evolution and the distribution of tumor cells at some fixed final time. We prove that the model satisfies the basics for calculus of variations and we establish first-order necessary optimality conditions for the optimal control problem.

Summary

We haven't generated a summary for this paper yet.