Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Measures of Urban Systems: from Entropy to Fractal Dimension (1811.07657v1)

Published 19 Nov 2018 in physics.soc-ph

Abstract: A type of fractal dimension definition is based on the generalized entropy function. Both entropy and fractal dimension can be employed to characterize complex spatial systems such as cities and regions. Despite the inherent connect between entropy and fractal dimension, they have different application scopes and directions in urban studies. This paper focuses on exploring how to convert entropy measurement into fractal dimension for the spatial analysis of scale-free urban phenomena using ideas from scaling. Urban systems proved to be random prefractal and multifractals systems. The entropy of fractal cities bears two typical properties. One is the scale dependence. Entropy values of urban systems always depend on the scales of spatial measurement. The other is entropy conservation. Different fractal parts bear the same entropy value. Thus entropy cannot reflect the spatial heterogeneity of fractal cities in theory. If we convert the generalized entropy into multifractal spectrums, the problems of scale dependence and entropy homogeneity can be solved to a degree for urban spatial analysis. The essence of scale dependence is the scaling in cities, and the spatial heterogeneity of cities can be characterized by multifractal scaling. This study may be helpful for the students to describe and understand spatial complexity of cities.

Summary

We haven't generated a summary for this paper yet.