Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Local RGB-to-CAD Correspondences for Object Pose Estimation (1811.07249v4)

Published 18 Nov 2018 in cs.CV, cs.LG, and cs.RO

Abstract: We consider the problem of 3D object pose estimation. While much recent work has focused on the RGB domain, the reliance on accurately annotated images limits their generalizability and scalability. On the other hand, the easily available CAD models of objects are rich sources of data, providing a large number of synthetically rendered images. In this paper, we solve this key problem of existing methods requiring expensive 3D pose annotations by proposing a new method that matches RGB images to CAD models for object pose estimation. Our key innovations compared to existing work include removing the need for either real-world textures for CAD models or explicit 3D pose annotations for RGB images. We achieve this through a series of objectives that learn how to select keypoints and enforce viewpoint and modality invariance across RGB images and CAD model renderings. We conduct extensive experiments to demonstrate that the proposed method can reliably estimate object pose in RGB images, as well as generalize to object instances not seen during training.

Citations (11)

Summary

We haven't generated a summary for this paper yet.