Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix valued Hermite polynomials, Burchnall formulas and non-abelian Toda lattice (1811.07219v1)

Published 17 Nov 2018 in math.CA, math-ph, and math.MP

Abstract: A general family of matrix valued Hermite type orthogonal polynomials is introduced and studied in detail by deriving Pearson equations for the weight and matrix valued differential equations for these matrix polynomials. This is used to derive Rodrigues formulas, explicit formulas for the squared norm and to give an explicit expression of the matrix entries as well to derive a connection formula for the matrix polynomials of Hermite type. We derive matrix valued analogues of Burchnall formulas in operational form as well explicit expansions for the matrix valued Hermite type orthogonal polynomials as well as for previously introduced matrix valued Gegenbauer type orthogonal polynomials. The Burchnall approach gives two descriptions of the matrix valued orthogonal polynomials for the Toda modification of the matrix weight for the Hermite setting. In particular, we obtain a non-trivial solution to the non-abelian Toda lattice equations.

Summary

We haven't generated a summary for this paper yet.